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News, Noise, and Fluctuations:  
An Empirical Exploration†

By Olivier J. Blanchard, Jean-Paul L’Huillier, and Guido Lorenzoni*

A common view of the business cycle gives a central role to anticipations. 
Consumers and firms continuously receive information about the future, which is 
sometimes news and sometimes just noise. Based on this information, consumers 
and firms choose spending and, because of nominal rigidities, spending affects out-
put in the short run. If ex post the information turns out to be news, the economy 
adjusts gradually to a new level of activity. If it turns out to be just noise, the econ-
omy returns to its initial state. Therefore, the dynamics of news and noise generate 
both short-run and long-run changes in aggregate activity.

This view appears to capture many of the aspects often ascribed to fluctuations: 
the role of animal spirits in affecting demand—spirits coming here from a rational 
reaction to information about the future—the role of demand in affecting output in 
the short run, together with the notion that in the long run output follows a natural 
path determined by fundamentals.

In this paper, we examine whether this view is consistent with the data. We reach 
three main conclusions, the first two methodological, the third substantive.

Structural VARs typically cannot recover news and noise shocks. The reason is 
straightforward: if agents face a signal extraction problem, and are unable to sepa-
rate news from noise, then the econometrician, faced with either the same data as the 
agents or a subset of these data, cannot do it either.

While structural estimation methods cannot recover the actual time series for 
news and noise shocks either, they can recover underlying structural parameters, 
and thus the relative role and dynamic effects of news and noise shocks.

Estimation of both a simple model, and then of a more elaborate DSGE model 
suggest that agents indeed solve such a signal extraction problem, and that noise 
shocks play an important role in determining short-run dynamics.

Recent efforts to estimate business cycle models in which expectations about the 
future play an important role include Christiano et al. (2010) and Schmitt-Grohé and 
Uribe (2012). Those papers follow the approach of Jaimovich and Rebelo (2009) 
and model news as perfectly anticipated productivity changes that will occur at 
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some future date. We share with those papers the emphasis on structural estimation. 
The main difference is the use of a signal extraction model for consumers’ informa-
tion and our focus on disentangling the role of news and noise.1

The paper is also related to recent papers that have pointed out that the way one 
models the agents’ information structure may affect the applicability of structural 
VARs methods, e.g, Fernández-Villaverde et al. (2007) and Leeper, Walker, and 
Yang (2009).

The paper is organized as follows. Section I presents a simple analytical model 
around which the discussion is best organized. Section II discusses estimation. 
Section III presents the results of estimation of a larger DSGE model.

I.  A Simple Model

We begin with the following model, which is both analytically convenient, and, as 
we shall see, provides a good starting point for looking at postwar US data.

Productivity is driven by two shocks: a permanent shock and a transitory shock.2 
Consumers do not observe the two shocks separately, but only the realized level 
of productivity. The permanent shock introduces uncertainty about the economy’s 
long-run fundamentals. The presence of the transitory shock implies that consumers 
cannot back out the permanent shock from productivity observations, thus creating 
a signal extraction problem.

Consumers have access to an additional source of information, as they observe a 
noisy signal of the permanent component of productivity. This adds a third source 
of fluctuations, a shock to the error term in the signal, which we call “noise shock.”

Consumers solve their signal extraction problem, form expectations about future 
productivity, and choose spending based on these expectations. Because of nominal 
rigidities, spending determines output in the short run.

Now to the specific assumptions.

Productivity ​a​t​ (in logs) is the sum of two components, the permanent component ​
x​t​ and the transitory component ​z​ t​ ,

(1)	​ a​t​  = ​ x ​t​  + ​ z ​t​ .

The permanent component follows the unit root process

(2)	 Δ​x​t​  = ​ ρ​x​ Δ​x​ t−1​  + ​ ϵ​  t​ .

The transitory component follows the stationary process

(3)	​ z​ t​  = ​ ρ​ z​​ z​ t−1​  + ​ η​ t​ .

1 Beaudry and Portier (2004) is an early example of a signal extraction model in the recent literature on business 
cycles driven by expectations about the future. Lippi and Neri (2007) have a signal extraction DSGE model and 
estimate it by maximum likelihood, but do not consider shocks to expectations about the future.

2 Permanent shock is a slight (and common) misnomer, as it refers to a shock with permanent effects that build 
up gradually.
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The coefficients ​ρ​x​ and ​ρ​  z​ are in [0, 1), and ​ϵ​ t​ and ​η​  t​ are i.i.d. normal shocks with 
variances ​σ​ ϵ​ 2​ and ​σ​ η​ 2​ .

For most of the paper, we assume that

(4)	​ ρ​x​  = ​ ρ​z​  =  ρ, 

and that ρ and the variances ​σ​ ϵ​ 2​ and ​σ​ η​ 2​ satisfy the restriction

(5)	 ρ ​σ​ ϵ​ 2​  = ​​ ( 1 − ρ )​​2​​σ​ η​ 2​ .

The motivation for these restrictions is that, together, they imply that the univari-
ate process for ​a​t​ is a random walk, that is

	 E ​[ ​a​  t+1​ | ​a ​t ​, ​a ​t−1​ , … ]​  = ​ a ​t​ .

This random walk representation is analytically convenient and, as will be seen 
below, also broadly in line with actual productivity data.34 To see why this prop-
erty holds, note first that the implication is immediate when ρ = ​σ​η​ = 0. Consider 
next the case in which ρ is positive and both variances are positive. An agent who 
observes a productivity increase at time t, can attribute it to an ϵ shock and forecast 
future productivity growth, or to an η shock and forecast mean reversion. When (5) 
is satisfied, these two considerations exactly balance and expected future productiv-
ity is equal to current productivity.5

On top of observing the realized productivity level ​a​  t​ each period, consumers 
receive a noisy signal about the permanent component ​x  ​t​  . The signal is given by

(6)	​ s​t​  = ​ x ​t​ + ​ν​t​ , 

where ​ν​t​ is i.i.d. normal with variance ​σ​ ν​ 2​ .
We assume that consumers set consumption (in logs) ​c​t​ equal to their long-run 

productivity expectations

(7)	​ c​t​  = ​  lim   
j→∞

​ ​E​t​ ​[ ​a ​t+j​ ]​, 

3 See Table 1.
4 A similar process (with full information) was recently used by Aguiar and Gopinath (2007) in an open econ-

omy calibration exercise. Boz, Daude, and Durdu (2011) explore the role of different informational assumptions 
in that context.

5 The proof is as follows. In general, (1)–(3) imply

	 Var[Δ ​a​t​ ]  = ​   1 _ 
1 − ρ​ ​ x​ 2​

 ​ ​σ​ ϵ​ 2​  − ​   2 _ 
1 + ρ​ ​z​ 

 ​ ​σ​ η​ 2​ ,

and

	 Cov[Δ​a​ t​ , Δ​a​t−j​]  =  ρ​  ​ x​ j ​  ​  1 _ 
1 − ρ​ ​ x​ 2​

 ​ ​σ​ ϵ​ 2​ − ρ ​ ​ z​ j−1​ ​ 
1 − ρ​ ​z​

 _ 
1 + ​ρ​ z​

 ​ ​σ​ η​ 2​  for all j > 0.

If (4) and (5) hold, these yield Var[Δ​a​t​] > 0 and Cov[Δ​a​t​ , Δ​a​t−j​ ] = 0 for all j > 0. Quah (1990, 1991) offers gen-
eral results on the decomposition of a univariate process in permanent and transitory components with orthogonal 
innovations.
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where ​E​t​ is the expectation conditional on the consumers’ information at date t, 
i.e., conditional on current and past values of ​a​t​ and ​s​t​  . We drastically simplify the 
determination of output by assuming that consumption is the only component of 
demand, and that output is fully determined by the demand side. Thus, output (in 
logs) is equal to consumption

	​ y​t​  = ​ c​t​  .

Finally, we assume a linear production function in labor, so that the labor input ​n​t​ 
adjusts to produce ​y​t​, given the current productivity ​a​t​, and

	​ n​t​  = ​ y​t​  − ​ a​  t​ .

In the online Appendix, we show that this model is the limit case of a standard 
new Keynesian model with Calvo pricing and a simple inflation targeting rule, when 
the frequency of price adjustment goes to zero. A useful property of this simple 
model is that consumption, by construction, is a random walk:

(8)	​ c​t​  = ​ E​t​[​c​t+1​], 

which simply follows from the law of iterated expectations.

A. Solving the Model

The only endogenous variable in the model is ​c​t​, and we now solve for it. Using 
(2) we can compute the expected value of cumulated productivity growth in the long 
run

	​  lim   
j→∞

​ ​E​t​ [​x​t+j​  − ​ x  ​t​]  = ​ 
ρ
 _ 

1 − ρ
 ​ ​E​t​ [ ​x ​t​  − ​ x ​t−1​].

Since the transitory component disappears in the long run, we can replace a with 
x in (7) and, rearranging the equation above, get consumption:

(9)	​ c​t​  = ​   1 _ 
1 − ρ

 ​ ​( ​E​t​ [​x​t​] − ρ ​E​t​ [​x  ​t−1​] )​.

To complete the solution of the model, one needs to solve the consumers’ signal 
extraction problem to express the expectations of ​x ​t​ and ​x​ t−1​ in terms of current 
and lagged values of the shocks (​ϵ​t​ , ​η​ t  ​, ​ν​t​). This is done using standard Kalman 
filtering. The resulting expressions, which are not particularly simple, are given in 
Appendix A.

Figure 1 shows the responses of consumption and productivity to our three shocks. 
We use as parameters the estimated parameters from Section II below. The time 
unit is the quarter and the impulses are one standard deviation positive shocks. The 
persistence parameter is ρ = 0.89, implying slowly building permanent shocks and 
slowly decaying transitory shocks. The standard deviations of the two technology 
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shocks are ​σ​ϵ​ = 0.07 percent and ​σ​η​ = 0.63 percent and that of the noise shock is ​
σ​ν​ = 0.89 percent, implying a fairly noisy signal.

In response to a permanent shock ​ϵ​t​  , productivity builds up slowly over time—the 
implication of a high ρ —and consumption also increases slowly. This reflects the 
fact that the volatilities of transitory and noise shocks are relatively large, so that it 
takes a while for consumers to recognize the permanent shock and adjust consump-
tion. For our parameter values, consumption—which depends on the expected value 
of long-run productivity—initially increases faster than productivity, generating a 
transitory increase in employment. A more volatile transitory shock or a less infor-
mative signal, can yield a slower consumption adjustment, generating an initial drop 
in employment.

In response to a transitory shock ​η​t​ , productivity initially increases, and then 
slowly declines over time. As agents put some weight on the productivity increase 
being due to a permanent shock, consumption initially increases. As agents learn 
that it was only a transitory shock, consumption returns back to normal. For our 
parameter values, consumption increases less than productivity, leading to an initial 
decrease in employment. Again, for different parameters, the outcome may be an 
increase or a decrease in employment.

Finally, in response to a noise shock ​ν​t​, consumption increases, and then returns to 
normal over time. The response of consumption need not be monotonic. In the simu-
lation presented here, the response turns briefly negative, before returning to normal. 
By assumption, productivity does not change, so employment initially increases, to 
return to normal over time.

In the next section, we ask whether and how we can recover the responses in 
Figure 1 from the data.

II.  Identification and Estimation

We now turn to issues of identification and estimation.
First, we derive the reduced form VAR representation of the process for con-

sumption and productivity and show that it is typically non-invertible. The result is 
more general than our model and implies that it is not possible to use simple semi-
structural identification assumptions to estimate the economy’s responses to shocks.

Figure 1. Impulse Responses
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Second, we show how, in our simple model, identification of parameters can be 
achieved using three moments in the data. This exercise shows how information in 
the data can be used to shed light on the role of news and noise shocks.

Third, and in preparation for the estimation of the larger DSGE model in the next 
section, we show how the model can be estimated by maximum likelihood, thus 
using all the information in the data.

A. Reduced Form VAR

Given our assumptions, the reduced form VAR representation for ​c​t​ and ​a​t​ takes 
the following simple form (this assumes that the econometrician does not observe 
​s​t​ . We return to the issue below):

(10)	​ c​t​  =  ​c​t−1​  + ​ u​ t​ c​, 

(11)	​ a​t​  =  ρ ​a ​t−1​  + ​ ( 1 − ρ )​ ​c​t−1​ + ​u​ t​ a​, 

where ​u​ t​ c​ and ​u​ t​ a​ are innovations with respect to the econometrician information 
set.

Let us provide the steps behind (10) and (11). To derive the first it is sufficient to 
notice that consumption satisfies the random walk property (8), where the expecta-
tion is conditional on past values of ​a​t​ and ​c​t​  . To derive the second, use (1) and (3) 
to get

	​ a​t​ − ρ ​a​t−1​  = ​ x​t​  + ​ z ​t​ − ρ ​( ​x ​t−1​  + ​ z  ​t−1​ )​  = ​ x ​t​  −  ρ ​x ​t−1​  + ​ η ​t​ .

Next, use (8) and (9) and the law of iterated expectations to get

	 (1 − ρ)​c​t−1​  =  (1 − ρ)​E​t−1​[​c​t​]  = ​ E​t−1​[ ​x​t​ − ρ  ​x​t−1​].

Combining these two results yields

	​ E​t−1​[​a​t​ − ρ ​a​t−1​ − (1 − ρ)​c​t−1​]  =  0,

which implies the representation (11).
The interesting feature of this representation is the presence of ​c​t−1​ in the pro-

ductivity equation. Recall that the univariate representation of productivity is  
a random walk, by assumption. But when we move to a multivariate represen-
tation, past consumption helps to predict productivity. The reason is that con-
sumption embeds the additional information on ​x ​t​ that the consumers obtain from 
observing ​s​t​  .

B. Structural VAR

Suppose we run a reduced form VAR in (​c​t​ , ​a​t​) and obtain the reduced form inno-
vations (​u​ t​ c​, ​u​ t​ a​).



3051blanchard et al.: news, noise, and fluctuationsVOL. 103 NO. 7

It is obvious that we cannot recover the original three shocks (​ϵ​t​ , ​η​ t ​, ​ν​t​) from two 
reduced form innovations. Only in two special cases can this be done.

The first is the case of perfect signal extraction, when ​σ​ν​ = 0. In this case (10) 
and (11) simplify to

	​ c​t​  =  ​c​t−1​  + ​   1 _ 
1 − ρ

 ​ ​ϵ​t​ ,

	​ a​t​  =  ρ ​a​t−1​ + ​( 1 − ρ )​ ​c​t−1​ + ​ϵ​t​ + ​η​t​ .

Consumption responds only to the permanent shock, productivity to both. If we 
impose the long-run restriction that only one of the shocks has a permanent effect on 
consumption and productivity, we can recover ​ϵ​t​ and ​η​t​  , and their dynamic effects. 
So in this case a structural VAR approach works.

The second is the case of no signal extraction, when ​σ​ν​ → ∞. In this case, con-
sumers only observe ​a​t​ and our random walk assumption implies that consumption 
and productivity are perfectly correlated with

	​ c​t​  =  ​c​t−1​  + ​ u  ​t​

	​ a​t​  =  ​a​t−1​  + ​ u​ t​ ,

where ​u​t​ denotes the common innovation in the two variables. In this case, it is not 
possible to recover ​ϵ​t​ and ​η​t​ from the single innovation ​u​t​  . But the decomposition 
between temporary and permanent shocks is now irrelevant, given that no information 
is available to separate them. We can then take the random walk representation of 
productivity as our primitive and interpret the productivity innovation as the single, 
permanent shock. In terms of this alternative representation, a structural VAR 
approach works.

Once we move away from these two cases, however, and have a partially informa-
tive signal, the reduced form VAR representation is non-invertible and a structural 
VAR approach cannot be used.

This conclusion, however, raises two questions:
First, what if the econometrician also observes the signal, so that he can estimate 

a trivariate reduced form in (​c​t​ , ​a ​t ​, ​s​t​), with residuals (​u​ t​ c​, ​u​ t​ a​, ​u​ t​ s​)? Even in this case, 
the answer remains the same. The reason is that agents’ decisions are functions 
of their expectations, so even if the econometrician observes the three variables 
(​c​t​  , ​a​ t  ​, ​s​t​), the first variable is a function of the other two, which implies that there 
are only two independent innovations driving the system. It is still impossible to 
recover three orthogonal shocks from two innovations. Lemma 1 in the Appendix, 
formulated in the context of a general signal extraction model, shows that singular-
ity is endemic to this class of models.

Second, one might still hope that long-run identification restrictions can be used 
to separate the effect of the permanent shock ​ϵ​t​ from the combined effect of the 
other two shocks, ​η​t​ and ​ν​t​  . Unfortunately, this partial identification also fails, and 
in dramatic fashion. In our model, in which consumption follows a random walk, 
the following result holds: Consumption displays a flat impulse response to any 
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identified shock, whether identified à la Blanchard and Quah (1989) or using any 
other SVAR restriction. This result is proven formally as Proposition 1 in the online 
Appendix. The intuition is that since consumption is a random walk conditional on 
the consumers’ information, an econometrician with access to the same information 
or less, cannot identify any shock with non-flat effects on consumption.

Figure 2 shows what happens through the results of a simulation. We generate data 
from our model—with the parameters used for Figure 1—and run a structural VAR 
with long-run restrictions à la Blanchard and Quah (1989) to identify a permanent 
and a temporary shock—henceforth, BQ shocks. The figure shows the estimated 
impulse responses to the two BQ shocks (dashed lines) and the impulse responses to 
the three original shocks in the model (solid lines). Panels A and C focus on shocks 
with permanent effects. For both productivity and consumption, the BQ shock has 
larger effects on impact and less of a gradual build up in later periods, relative to 
the original shock ϵ.6 This is especially pronounced for consumption, where the 
response to the BQ shock is virtually flat.7 Panels B and D show the responses 

6 All the responses are to one standard deviation shocks.
7 The theoretical result mentioned above—that the response of consumption to any identified shock is flat—

holds only asymptotically, as the size of the sample goes to infinity. In short samples, the impulse responses are 
only approximately flat, as in Figure 2.

Figure 2. Model and SVAR-Identified Impulse Responses
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to shocks with temporary effects.8 The productivity response to the BQ transitory 
shock is the only one close to that of the original η shock. The identified response of 
consumption to the BQ transitory shock is zero, unlike those of η and ν.

C. Matching Moments

While the lack of invertibility implies that structural estimation cannot recover the 
shocks themselves, the use of more model restrictions than in structural VARs allows 
us to recover the underlying parameters, and thus the dynamic effects of the shocks.

In our model three moments from the data are sufficient to identify all the param-
eters. First, ρ is identified using the reduced form relation (11). Given ρ, it is then 
easy to recover the variances ​σ​ ϵ​ 2​ , ​σ​ η​ 2​  , and ​σ​ ν​ 2​. This identification exploits the model’s 
assumptions on consumers’ forward looking behavior and rational expectations.9

We now go through each step of our moment-based estimation using US quarterly 
data.10 This will also allow us to show that our reduced form benchmark model 
(10)–(11) fits the time series facts for productivity and consumption fairly well.

We measure productivity ​a​t​ as the logarithm of the ratio of GDP to employment 
and consumption ​c​t​ as the logarithm of the ratio of NIPA consumption to population. 
Our sample is from 1970:I to 2008:I. An issue we have to confront is that, in con-
tradiction to our model, and indeed to any balanced growth model, productivity and 
consumption have different growth rates over the sample (0.34 percent per quarter 
for productivity, versus 0.46 percent for consumption). This difference reflects fac-
tors left out of the model, from changes in participation, to changes in the saving 
rate, to changes in the capital-output ratio. For this reason, in what follows, we allow 
for a secular drift in the consumption-to-productivity ratio and remove it from the 
consumption series.11

Some basic features of the time series for productivity and consumption are pre-
sented in Table 1. Lines 1 and 2 show the results of estimated AR(1) for the first 
differences of the two variables. Recall that our model implies that both productivity 
and consumption should follow random walks, so the AR(1) term should be equal 
to zero. In both cases, the AR(1) term is indeed small, insignificant in the case of 
productivity, significant in the case of consumption.

The first step of our identification uses the reduced form equation (11) to recover 
ρ. Writing (11) as a cointegrating regression, we have

(12)	 Δ​a​t​  =  (1 − ρ)(​c​t−1​ − ​a​t−1​)  + ​ u​ t​ a​,

which can be estimated by OLS. Our estimate is reported on Line 3 of Table 1. 
Line 4 allows for lagged rates of change of consumption and productivity, and shows 

8 The thick line corresponds to the η shock, the thin line to the ν shock, the dashed line to the BQ transitory 
shock.

9 The use of the permanent income logic together with rational expectations to identify temporary and permanent 
shocks connects our approach to a large body of work on household income dynamics, e.g., Blundell and Preston 
(1998).

10 The data are from the Federal Reserve Economic Database (FRED). Consumption is equal to real personal 
consumption expenditures.

11 In the context of our approach, where we are trying to isolate potentially low frequency movements in produc-
tivity, this is an imperfect solution. But, given our purposes, it seems a reasonable first pass assumption.
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the presence of richer dynamics than implied by our specification, with significant 
coefficients on the lagged rates of change of both variables.

The model provides alternative ways of estimating ρ, exploiting the correlation 
of productivity growth and consumption at different horizons. Namely, the model 
implies

	​ a​t+j​ − ​a​t​  =  (1 − ​ρ  ​j​ )(​c​t−1​ − ​a​t−1​)  + ​ u​ t​ a, j​,

for any j ≥ 0, where ​u​ t​ a, j​ is a disturbance uncorrelated to the econometrician’s infor-
mation at date t.12 Lines 5 to 7 explore this implication.13 The results are roughly 
consistent with the model predictions, and all point to relatively high values for ρ 
(reported in the last column). The idea that the forecasting power of the consump-
tion-to-productivity ratio tells us something about consumers’ information about 
future productivity is closely related to a similar observation made by Cochrane 
(1994) in terms of the consumption-to-output ratio. Indeed this observation was the 
motivating reason for Cochrane’s (1994) early suggestion to introduce news shocks 
in business cycle models.

The second step of our identification is to estimate ​σ​ϵ​ and ​σ​η​ . For this, we exploit 
our univariate random walk assumption for ​a​t​ , that is, condition (5), which implies 
the following relations between the two variances and the variance of Δ​a​t​ :

	​ σ​ ϵ​ 2​  =  Var [Δ​a​t​]/(1 − ρ​)​2​

	​ σ​ η​ 2​  =  Var [Δ​a​t​]/ρ.

12 This equation is obtained by induction. It holds for j = 0 from (11). If it holds for j, then ​E​t​​[ ​a​t+j​ ]​  
= ​( 1 − ​ρ ​ j​ )​ ​c​t​ + ​ρ ​ j​ ​a​t​ . Taking expectations at time t − 1 on both sides yields

	​ E​t−1​[​a​t+j​ ]  = ​ ( 1 − ​ρ ​ j​ )​​E​t−1​[​c​t​]  + ​ ρ ​ j​​ E​t−1​[​a​t​]

	 = ​ ( 1 − ​ρ​  j​ )​​c​t−1​  + ​ ρ​  j​((1 − ρ)​c​t−1​ + ρ ​a​t−1​)

	 = ​ ( 1 − ​ρ ​ j+1​ )​​c​t−1​  + ​ ρ ​ j+1​​a​t−1​  ,

the second equality follows from (10) and (11), the third from rearranging.
13 The standard errors are corrected for the presence of autocorrelation due to overlapping intervals using the 

Newey-West estimator.

Table 1—  Consumption and Productivity Regressions

Δa(−1) Δc(−1) (c −a)(−1) Implied ρ 

1.  Δa −0.06 (0.09)
2.  Δc 0.24 (0.08)
3.  Δa 0.05 (0.03) 0.95
4.  Δa −0.21 (0.10) 0.32 (0.12) 0.03 (0.02)
5.  Δ(8)a 0.03 (0.15) 0.99
6.  Δ(20)a 0.31 (0.30) 0.98
7.  Δ(40)a 0.98 (0.43) 0.91

Notes: Sample: 1970:I to 2008:I. Δ( j )a ≡ a(+j − 1) − a(−1). Robust standard errors in parenthesis, computed 
using Newey-West window with 10 lags.
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Given a sample standard deviation of Δ​a​t​ equal to 0.67 percent and given our esti-
mate for ρ, we get estimates ​σ​ϵ​ = 0.03 percent and ​σ​η​ = 0.65 percent. These results 
imply a very smooth permanent component, in which small shocks steadily build up 
over time, and a large transitory component, which decays slowly over time.

The third and last step is to recover the variance of the noise shock ​σ​ν​  . For this, 
we match the coefficient of correlation between the residual of regression (12) and 
consumption growth Δc. Notice that if the signal is perfectly informative (​σ​ν​ = 0) 
this correlation is positive but smaller than 1, while if the signal is completely 
uninformative (​σ​ν​ → ∞) this correlation is 1.14 Moreover, numerical results show 
that, given all other parameters, the coefficient of correlation is an increasing func-
tion of ​σ​ν​  . To get some intuition for this relation, notice that consumption is driven 
by the expected permanent component of productivity, while productivity itself is 
also driven by the temporary component. When the signal is more precise consum-
ers can better separate the two components and so the innovations in consumption 
and productivity are less correlated. In the data, the coefficient of correlation is equal 
to 0.52, which is an intermediate value between the case of a perfectly informative 
signal (correlation 0.05) and the case of an uninformative signal (correlation 1). 
Therefore, the data point to the presence of a significant signal extraction problem, 
with an estimated standard deviation of the noise shock equal to ​σ​ν​ = 2.1 percent.

D. Maximum Likelihood

We now turn to estimation by maximum likelihood. Conditional on the model 
being correctly specified, a maximum likelihood approach dominates the moment 
matching approach of the last section, as it fully incorporates all the restrictions 
implied by the model. For example, the maximum likelihood approach fully exploits 
the correlation between ​u​ t​ c​ and ​u​ t​ a​ implied by the model.

A maximum likelihood approach has the advantage that it can easily be extended 
to richer models, like the DSGE model of Section III. In Appendix A, we show 
how to compute the likelihood function for a general representative-agent model 
with signal extraction. The main idea is first to solve the consumer’s Kalman filter 
to obtain the dynamics of consumer’s expectations, as discussed in Section IA, and 
next to build the econometrician’s Kalman filter, including in the list of unobservable 
state variables the consumer’s expectations. This way of computing the likelihood 
function can also be used to apply Bayesian methods, as we shall do in Section III.

Table 2 shows the results of estimation of the benchmark model presented as a 
grid over values of ρ from 0 to 0.99.15 For each value of ρ, we find the values of 
the remaining parameters that maximize the likelihood function and in the last col-
umn we report the corresponding likelihood value. The table shows that the likeli-
hood function has a well-behaved maximum at ρ = 0.89, yielding the parameters 
reported on line 6.

14 These bounds can be derived from the analysis in Section IIA. To obtain the first, some algebra shows that 
under full information Cov[​u​ t​ c​, ​u​ t​ a​ ]/​√

___________
  Var[​u​ t​ c ​]Var[​u​ t​ a​ ] ​ = (1 − ρ)/​√

__________
  (1 − ρ​)​2​ + ρ ​. The second bound is immediate.

15 For maximum likelihood estimation we used Dynare. Our codes are available online. Our observables are 
first differences of labor productivity and consumption, so we use a diffuse Kalman Filter to initialize the variance 
covariance matrix of the estimator (a variance-covariance matrix with a diagonal of 10).
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Recall that the maximum likelihood approach uses all the implicit restrictions 
imposed by the model. This explains the difference between the estimates obtained 
by ML and those obtained by moment matching in Section IIC. In particular, the 
maximum likelihood approach favors smaller values of ρ and ​σ​ν​ . However, if we 
look at line 8 of Table 2, we see parameters closer to those in Section IIC and the 
likelihood gain from line 8 to line 6 is not very large. In other words, the data are 
consistent with a range of different combinations of ρ and ​σ​ν​ . When we look at the 
model’s implications in terms of variance decomposition, we will consider different 
values in this range.

Note that the random walk assumption for productivity is not necessary for iden-
tification of the model’s parameters. In particular, we can relax assumptions (4)–(5), 
allowing for different coefficients ​ρ​x​ and ​ρ​z​ in equations (2) and (3) and estimating 
independently ​σ​η​ and ​σ​ϵ​ . The estimation results are reported in Table 3 and are quite 
close to those obtained under the random walk assumption.

What do our results imply in terms of the dynamic effects of the shocks and 
of variance decomposition? If we use the estimated parameters from the bench-
mark model (row 6 in Table 2), the dynamic effects of each shock were already 
given in Figure 1 of Section IA: a slow and steady build up of permanent shocks on 
productivity and consumption, a slowly decreasing effect of transitory shocks on 
productivity and consumption, and a slowly decreasing effect of noise shocks on 
consumption.

Table 4 presents the implications of the estimated parameters for variance decom-
position, showing the contribution of the three shocks to forecast error variance at 
different horizons. Noise shocks are the major source of short-run volatility here, 

Table 2—Maximum Likelihood Estimation: Benchmark Model

ρ ​σ​u​ ​σ​ϵ​ ​σ​η​ ​σ​ν​ ML

1. 0.00 0.0067 0.0067 0.0000 0.0089 −3 × 1​0​12​ 
2. 0.25 0.0183 0.0137 0.0092 0.0000 859.2
3. 0.50 0.0102 0.0051 0.0072 0.0000 980.5
4. 0.70 0.0077 0.0023 0.0065 0.0026 1,042.6
5. 0.80 0.0071 0.0014 0.0064 0.0056 1,064.5
6. 0.89 0.0067 0.0007 0.0063 0.0089 1,073.2
7. 0.90 0.0067 0.0007 0.0064 0.0099 1,073.1
8. 0.95 0.0068 0.0003 0.0066 0.0234 1,072.2
9. 0.99 0.0063 0.0001 0.0063 0.0753 1,068.5

Table 3—Maximum Likelihood Estimation: Unconstrained Model

Estimate Standard error

​ρ​x​ 0.8879 0.0478

​ρ​z​ 0.8878 0.0474

​σ​η​ 0.006 0.0004

​σ​ϵ​ 0.0007 0.0003

​σ​ν​ 0.0090 0.0052

ML 1,073.3
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accounting for more than 70 percent of consumption volatility at a 1-quarter horizon 
and more than 50 percent at a one year horizon, while permanent technology shocks 
play a smaller role, having almost no effect on quarterly volatility and explaining less 
than 30 percent at a 4-quarter horizon. Clearly, the variance-decomposition implica-
tions are very sharp here because the baseline model only allows for three shocks. In 
the next section, we will see that noise shocks remain an important source of short-
run consumption volatility in richer specifications that allow for more observables 
and more shocks.

At this stage, it is useful to compare the exercise here to traditional SVAR exer-
cises, such as Shapiro and Watson (1988) and Galí (1992), that also use a small 
number of shocks and follow Blanchard and Quah (1989) to identify supply shocks. 
In those papers, transitory demand shocks typically explain a smaller fraction of 
aggregate volatility than our noise shock, and the permanent technology shock 
plays a bigger role. The analysis in Section IIB helps to explain the difference with 
our results, by showing that, asymptotically, a SVAR is biased toward assigning 
100 percent of consumption volatility to the permanent shock.

E. Recovering States and Shocks

So far we have focused on using structural estimation to estimate the model’s 
parameters. Now we turn to the question: what information on the unobservable 
states and shocks can be recovered from structural estimation?

Here the idea is to exploit the fact that the econometrician has access to the whole 
sample. Looking at what happens to productivity after the fact, we may be able to 
get a better sense of what the states and shocks were. In other words, using data from 
times 1 to T, we can form our best estimates of states and shocks at any time t ≤ T. 
This is precisely the job of the Kalman smoother.

Panel A of Figure 3 plots estimates for the permanent component of productiv-
ity ​x​t​ obtained from our benchmark model. The solid line corresponds to ​x​t | T​ , the 
econometrician’s smoothed estimate of ​x​t​ . The dashed line is ​x​(t | t) | T​ , the econometri-
cian’s smoothed estimate of the consumers’ real time estimate of the same variable.

Looking at medium-run movements, the model identifies a gradual adjustment of 
consumers’ expectations to the productivity slowdown in the 1970s and a symmetric 
gradual adjustment in the opposite direction during the faster productivity growth 
after the mid-1990s. Around these medium-run trends, temporary fluctuations in 
consumers’ expectations produce short-run volatility.

To gauge the short-run effects of expectational errors, the consumers’ expec-
tations of ​x​t​ are not sufficient, given that consumers project future growth based 

Table 4  —Variance Decomposition of Consumption

Quarter Perm. tech. Trans. tech. Noise

  1 0.016 0.235 0.749
  4 0.269 0.198 0.533
  8 0.683 0.087 0.229
12 0.832 0.046 0.122
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on their expectations of both ​x​t​ and ​x​t−1​ . For this reason, in panel B of Figure 3, 
we plot the smoothed series for the consumers’ real time expectations regarding 
long-run productivity, ​x​(t+∞ | t) | T​ = (​x​(t | t) | T​ − ρ ​x​(t−1 | t) | T​)/(1 − ρ), and compare it 
to the same expression computed using ​x​t | T​ and ​x  ​t−1 | T​ . The model generates large 
short-run consumption volatility out of temporary changes in consumers’ expecta-
tions. Sometimes these changes occur when consumers’ overstate current ​x​t​ (e.g., 
at the end of the 1980s), other times when consumers slowly catch up to an under-
lying productivity acceleration and understate ​x​t−1​ (e.g., at the end of the 1990s). 
Obviously, the model is too stylized to give a credible account of all cyclical epi-
sodes. For example, given the absence of monetary policy shocks the recession of 
1981–1982 is fully attributed to animal spirits. When we repeated the exercise using 
the full DSGE model of the next section (which allows for monetary policy shocks) 
this effect goes away.

The Kalman smoother also tell us what is the root-mean-square error (RMSE) of 
the estimates of ​x​t​ made both by the econometrician and by the consumer. It turns 
out that in steady state these two estimates coincide and the RMSE is 0.44 percent 
for estimates using data up to date t. If we can use all possible future data the RMSE 
halves, to 0.28 percent, but remains positive.16 The online Appendix contains more 
details.

Turning to the shocks, we know from our discussion of structural VARs that the 
information in current and past values of ​c​t​ and ​a​t​ is not sufficient to derive the 
values of the current shocks. However, this does not mean that the data contain no 

16 That is, this is the RMSE of the estimate of ​x ​t​ based on data up to time T > t when we let T → ∞.
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Figure 3. Smoothed Estimates of the Permanent Component of Productivity, of Long-
Run Productivity, and of Consumers’ Real Time Expectations
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information on the shocks. In particular, the Kalman smoother gives estimates of 
​ϵ​t​ , ​η​t​ , and ​ν​t​ using the entire time series available. Figure 4 plots these estimates for 
our benchmark model.

Notice the apparent high degree of autocorrelation of the estimated permanent 
shocks in panel A of Figure 4. The smoothed estimates of ​ϵ​t​ in consecutive quar-
ters tend to be highly correlated, as the econometrician does not know to which 
quarter to attribute an observed permanent change in productivity.17 Notice that the 
autocorrelation of the estimated shocks is not a rejection of the assumption of i.i.d. 
shocks, but purely a reflection of the econometrician’s information. In fact, per-
forming the same estimation exercise on simulated data delivers a similar degree of 
autocorrelation.

III.  A DSGE Exercise

In this section, we start from the same productivity process and information struc-
ture of Section I, but embed them in a small scale DSGE model. The model includes 
investment and capital accumulation, an explicit treatment of nominal rigidities and 
a monetary policy rule à la Taylor. The model also allows for variable capacity 
utilization and includes adjustment costs in consumption (habit) and investment, 
all elements that have been proposed in the literature to better capture the observed 
dynamics of aggregate quantities.

17 In the online Appendix, we show that the RMSE for the ϵ shock is very high, about 94 percent of the prior 
standard deviation ​σ​ϵ​ .
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We have three objectives. First, we want to explore the robustness of our findings 
to a richer model, with a larger number of shocks. Second, we want to look at the 
response of investment to noise shocks. And finally we want to show that it is easy 
to estimate a DSGE model with a signal extraction information structure.

The model is estimated using Bayesian methods, as is now common for DSGE 
models with a relatively large number of parameters. The approach to compute 
the likelihood function is the one outlined in Section IID. However, a useful result 
makes the estimation easier. Namely, Lemma 2 in the Appendix shows that the mod-
el’s information structure is observationally equivalent to the information structure 
of a model with full information and correlated shocks.18 One can then estimate the 
full-information model subject to a restriction on the shocks’ correlation matrix and, 
at the end, recover the parameters of the original signal extraction model.

A. Model

Since the model is standard, we describe here its main ingredients and leave the 
details and the log-linearization to the online Appendix. The model is similar to 
those in Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005). 
The preferences of the representative household are given by the utility function

(13)	 E ​[ ​ ∑ ​ 
t=0

  ​ 
∞

  ​​β ​t​ ​( log ​( ​C​t​ − h ​C​t−1​ )​  − ​   1 _ 
1 + ζ

 ​ ​∫​ 
0
​ 
1

​​N​ jt​ 1+ζ​ dj )​ ]​, 
where ​C​t​ is consumption, the term h ​C​t−1​ captures internal habit formation, and ​
N​jt​ is the supply of specialized labor of type j. The presence of differentiated labor 
introduces monopolistic competition in wage setting as in Erceg, Henderson, 
and Levin (2000). The capital stock ​​ 

_
 K​​t​ is owned and rented by the representative 

household and the capital accumulation equation is

(14)	​​ 
_
 K​​t​  = ​ ( 1 − δ )​ ​​ 

_
 K​​t−1​  + ​ D​t​​[ 1 −  ​( ​I​t​/​I​t−1​ )​ ]​ ​I​t​ , 

where δ is the depreciation rate, ​D​t​ is a stochastic investment-specific technology 
parameter, and  is a quadratic adjustment cost in investment

	  (​I​t​/​I​t−1​)  =  χ(​I​t​/​I​t−1​  −  Γ​)​2​/2,

where Γ is the long-run gross growth rate of TFP. The model features variable capac-
ity utilization: the capital services supplied by the capital stock ​​ 

_
 K​​t−1​ are

(15)	​ K​t​  = ​ U​t​ ​​ 
_
 K​​t−1​  , 

where ​U​t​ is the degree of capital utilization and the cost of capacity utilization, in 
terms of current production, is (​U​t​)​​ 

_
 K​​t−1​  , where ​( ​U​t​ )​ = ​U​ t​ 1+ξ​/​( 1 + ξ )​.

18 Therefore, a signal extraction model can be seen as a way of imposing restrictions on a class of models with 
correlated shocks.
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The final good is a Dixit-Stiglitz aggregate of a continuum of intermediate goods, 
produced by monopolistic competitive firms, with staggered price setting à la Calvo 
(1983). Similarly, specialized labor services are supplied under monopolistic com-
petition, with staggered nominal wages. The monetary authority sets the nominal 
interest rate following a standard inertial Taylor rule.

The model is estimated on US time series for GDP, consumption, investment, 
employment, the federal funds rate, inflation, and wages, for the period 1954:III–
2011:I. More details on the data are in the online Appendix.

B. Results

The parameter estimates are reported in Table 5. Figures 5 and 6 show the impulse 
responses for our seven observed variables following the three shocks that are the 
focus of this paper: the permanent and transitory technology shocks, and the noise 
shock. Table 6 shows variance decomposition results for consumption, investment, and 
output, showing the contribution of the eight shocks in the model at different horizons.

First, let us look at the results for consumption.
Looking at the impulse responses in Figure 5, the responses of consumption to 

our three shocks are qualitatively similar to those shown in Figure 1 for the simple 

Table 5—Full DSGE: Estimated Parameters

Parameter Prior Posterior Conf. bands Distribution Prior SD

h Habit 0.5 0.5262 0.4894 0.5787 Beta 0.1
α Production function 0.3 0.1859 0.1748 0.1933 Normal 0.05
ζ Inv. Frisch elasticity 2 2.0871 1.0571 3.3012 Gamma 0.75
ξ Capacity cost 5 3.4919 2.8912 4.3021 Normal 1
χ Adjustment cost 4 4.3311 3.6751 5.5079 Gamma 1
θ Calvo prices 0.66 0.8770 0.8545 0.8998 Beta 0.1
​θ​w​ Calvo wages 0.66 0.8690 0.8227 0.9183 Beta 0.1
​γ​π​ Taylor rule inflation 1.5 1.0137 1.0102 1.0568 Normal 0.3
γ​ ​y​ Taylor rule output 0.005 0.0050 0.0037 0.0061 Normal 0.05

Shock processes
Neutral technology and noise

ρ 0.6 0.9426 0.9230 0.9618 Beta 0.2
​σ​u​ 0.5 1.1977 1.0960 1.2975 Inv. Gamma 1
​σ​ν​ 1 1.4738 0.7908 2.3176 Inv. Gamma 1

Investment-specific
ρ​ ​d​ 0.6 0.4641 0.3263 0.5743 Beta 0.2
σ​ ​d​ 0.15 11.098 8.4323 14.910 Inv. Gamma 1.5

Markups
ρ​ ​p​ 0.6 0.7722 0.6991 0.8461 Beta 0.2
ϕ​ ​p​ 0.5 0.4953 0.3749 0.6557 Beta 0.2
​σ​p​ 0.15 0.1778 0.1508 0.2027 Inv. Gamma 1
​ρ​w​ 0.6 0.9530 0.9534 0.9650 Beta 0.2
​ϕ​w​ 0.5 0.9683 0.9700 0.9739 Beta 0.2
​σ​w​ 0.15 0.3057 0.2847 0.3264 Inv. Gamma 1

Policy
​ρ​r​ 0.5 0.5583 0.5125 0.6224 Beta 0.2
ρ​ ​q​ 0.4 0.0413 0.0024 0.0807 Beta 0.2
​σ​q​ 0.15 0.3500 0.3148 0.3782 Inv. Gamma 1
ρ​ ​g​ 0.6 0.9972 0.9938 0.9998 Beta 0.2
​σ​g​ 0.5 0.2877 0.2680 0.3078 Inv. Gamma 1
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Figure 6. Impulse Responses, Bayesian DSGE, Prices
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model of Section I: in the short run consumption responds mostly to the noise and 
transitory technology shocks; the response to the noise shock dies down faster; the 
response to the permanent shock is small in the short run and builds up gradually. 
The main qualitative difference is a slightly hump-shaped response to the transitory 
and noise shocks, due to the habit in preferences. The main quantitative differences 
are that the DSGE favors a larger coefficient of autocorrelation for growth shocks— 
ρ = 0.94 versus ρ = 0.89 in Section IID—and that it attributes larger volatility to 
both fundamental and noise shocks.

Looking at the variance decomposition in Table 6, we find that the noise shock 
is the main short-run driver of consumption, accounting for more than half of con-
sumption volatility in the very short term and about one-fourth of it at a two year 
horizon. Relative to the simple model of Section I, a sizeable fraction of short-run 
consumption volatility is now explained by the price markup shock.

The main novelty of the DSGE model, relative to our simple model earlier, is 
the presence of investment. The second column of Figure 5 shows that investment 
increases gradually and permanently after a permanent shock and has a hump-shaped 
response to a transitory shock. Following a noise shock the investment response is 
first positive and hump-shaped and later turns negative. What is happening is that at 
some point agents realize that the shock was just noise and the economy reverts to 
its original capital stock.

Two mechanisms drive up investment in the short run, following a noise shock. 
First, a higher expected marginal product of capital in the future leads to expected 
high future investment. This, combined with adjustment costs, leads to an increase 
in investment today.19 Second, the short-run increase in consumption increases the 
expected marginal profitability of capital in the near term, with a direct effect on 
investment today.

19 The higher investment in the future is not eventually realized, as agents later learn that the shock was noise.

Table 6—Variance Decomposition

Quarter
Perm. 
tech.

Trans. 
tech.

Noise Inv. 
specific

Price 
markup

Wage 
markup Monetary Fiscal

Consumption
  1 0.004 0.186 0.512 0.001 0.205 0.037 0.001 0.055
  4 0.064 0.246 0.430 0.002 0.117 0.039 0.006 0.095
  8 0.331 0.198 0.245 0.003 0.063 0.024 0.015 0.121
12 0.577 0.117 0.134 0.003 0.034 0.013 0.017 0.106

Investment
  1 0.000 0.005 0.011 0.971 0.006 0.006 0.000 0.000
  4 0.003 0.017 0.021 0.936 0.008 0.016 0.000 0.000
  8 0.031 0.036 0.027 0.869 0.009 0.027 0.000 0.001
12 0.120 0.046 0.025 0.769 0.009 0.029 0.000 0.003

Output
  1 0.003 0.249 0.200 0.372 0.083 0.026 0.001 0.066
  4 0.040 0.272 0.198 0.363 0.057 0.039 0.003 0.028
  8 0.228 0.270 0.134 0.267 0.036 0.035 0.006 0.024
12 0.477 0.200 0.083 0.167 0.023 0.023 0.008 0.020
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In terms of variance decomposition, the noise shock only accounts for a small 
fraction of investment volatility, as virtually all short-run investment volatility is 
due to the investment-specific shock. To understand the relation between this result 
and the impulse responses in Figure 5, notice that a positive noise shock produces an 
increase in consumption and investment of similar magnitudes. However, uncondi-
tional investment volatility is larger than consumption volatility, so the investment-
specific shock is needed to account for this extra volatility.

The responses of aggregate output follow from those of consumption and invest-
ment. In particular, in terms of variance decomposition the three most important 
drivers of output are the investment-specific shock, the transitory technology shock, 
and the noise shock, with the latter explaining about 20 percent of volatility at a 
1-year horizon.

The DSGE model exploits the rich shock structure available and uses different 
shocks to explain separately the dynamics of consumption and investment. This is a 
common feature in estimated DSGE exercises. For example, in Justiniano, Primiceri, 
and Tambalotti (2010) an investment-specific technology shock explains the largest 
fraction of investment volatility, while the largest fraction of consumption volatility 
is explained by a shock to intertemporal preferences. Our noise shock plays a role 
similar to an intertemporal-preference shock, as both appear as error terms on the 
right-hand side of the Euler equation.

We find expectation-based shocks like our noise shock more appealing than pref-
erence shocks, both on a priori grounds and because they impose more testable 
restrictions on consumption volatility. Moreover, when the model is estimated, 
noise shocks have an additional advantage over intertemporal preference shocks: 
they generate comovement of investment, consumption, and hours. That is, they 
produce aggregate responses in line with a standard definition of a business cycle.20 
To illustrate this difference, we have estimated our model removing noise—that 
is, under perfect information—and allowing for a standard autocorrelated shock 
to the consumers’ discount factor. In Figure 7, we plot the responses of consump-
tion and investment to a preference shock in this alternative estimation. Figure 7 
shows that this preference shock produces negative comovement of consumption 
and investment.21

We conclude this section by observing that nominal rigidities and the monetary 
policy rule play an important role in producing substantial consumption volatility 
from noise shocks. Since actual productivity is unaffected when the noise shock 
hits, output increases above its natural level, generating inflation (bottom middle 
panel of Figure 6) and the central bank responds by raising interest rates (bottom 
left panel of Figure 6). The associated increase in real interest rates tends to dampen 
the consumption response. Sufficiently rigid prices and a sufficiently unresponsive 
Taylor rule imply that this dampening effect is not too strong. From experimenting 
with various combinations of parameters, we have reached the following conclu-
sions. First, absent nominal rigidities the effects of a noise shock on consumption 

20 There is now a growing literature on the ability of various types of shocks to generate comovement. See 
Lorenzoni (2011) for a review.

21 We do the estimations separately instead of combining noise and preference shocks in the same model, 
because having both shocks poses serious identification problems, making the maximization step unstable and the 
estimates very sensitive to the prior.
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are muted and the effects on investment are reversed. Second, re-estimating the 
model imposing smaller values of the Calvo parameters (e.g., θ = ​θ​w​ = 0.75) or 
imposing a more responsive monetary policy rule (e.g., ​γ​π​ = 1.5), the simulated 
responses are close to the baseline. Third, if we impose at the same time smaller 
Calvo parameters and a more responsive policy rule, the effect of noise shocks on 
consumption can be considerably dampened.

Notice that our model uses log utility in consumption, as is common in the DSGE 
literature. This sets the intertemporal elasticity of substitution to one, making con-
sumption highly sensitive to the real interest rate. It is quite possible that, with a 
lower elasticity of substitution, a more active monetary policy rule with more flex-
ible prices would be less of a dampener of noise-driven consumption movements. 
We leave to future research the estimation of models with intertemporal elasticity 
different from one.22

Finally, notice that the recovery of states and shocks can be done in the DSGE 
model exactly as we did in Section IIE for the simple model, but, for reasons of 
space, the results are omitted.

IV.  Conclusions

On the methodological side, we have explored the problem of estimating models 
with news and noise, which we think provide an appealing description of business 
cycles. We have shown the limits of SVAR estimation and shown how these models 
can be estimated with structural methods. This implies that to identify the role of 
news and noise in fluctuations one must rely more heavily on the model’s structure. 
Our simple model shows that a central role for identification is played by the con-
sumer’s Euler equation, which embeds the idea that consumption can be driven by 
changes in the consumers’ long-run expectations. Our likelihood-based estimation 
exercises in Sections IID and III show that signal extraction models can be easily 
estimated adapting common structural methods.

22 We need preferences consistent with balanced growth, since we have a non-stationary technology process. 
Therefore, moving away from log utility will require to introduce non-separable preferences à la King, Plosser, and 
Rebelo (1988).
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Figure 7. Impulse Responses to Intertemporal Preference Shock



3066 THE AMERICAN ECONOMIC REVIEW december 2013

On the empirical side, the data appear consistent with a view of fluctuations where 
the pattern of technological change is smooth, subject to random shocks which only 
build up slowly, while a sizable fraction of short-run volatility in consumption and 
output comes from noisy information on these long-run trends.

A useful extension for future work is to add to the empirical exercise variables 
that capture directly information on consumers’ expectations. For example, one 
could include financial market prices, following Beaudry and Portier (2006), or sur-
vey measures of consumer confidence, as in Barsky and Sims (2012). The analysis 
in Section IIB, where we allow the econometrician to directly observe all the signals 
observed by the consumers, shows that adding these variables will not solve the 
identification problems of SVARs. But these variables can feed additional informa-
tion into structural exercises like those of Sections IID and III, offering better ways 
of separating expectational shocks from other types of disturbances.

Appendix

In this Appendix, we formulate a general representative agent dynamic linear 
model with signal extraction. Both the simple model of Section I and the full DSGE 
model of Section III are special cases of this formulation. We use this model for 
various purposes: (i) to set up the agents’ Kalman filter used in the model solution 
(Section IA) and the econometrician’s Kalman filter used to construct the likelihood 
function in Section IID; (ii) to derive the general singularity result for signal extrac-
tion models discussed in Section IIB; and (iii) to derive the equivalent full informa-
tion model which simplifies estimation in Section III.

Uncertainty is captured by the exogenous state vector ​x​t​ that follows the process

(A1)	​ x​t​  =  A​x​ t−1​  +  B​v​t​ , 

where ​v​t​ is an n-dimensional vector of mutually independent i.i.d. shocks, with 
positive variance. The representative agent observes the m-dimensional vector

(A2)	​ s​t​  =  C​x  ​t​  +  D​v​t​ .

In Sections I and III, the state vector is ​x  ​t​ = (​x​t​ , ​x​t−1​, ​z​t​​)′​, the shock vector is ​
v​t​ = (​ϵ​t​ , ​η​t​ , ​ν​t​​)′​ and the vector of consumer observations is ​s​t​ = (​a​t​  , ​s​t​). So the 
matrices A, B, C, D are

A  ≡ ​ [ ​1 + ρ
 
 

 1   

0

 ​ ​ 
−ρ

 
 

 0   

0

 ​ ​  
0
 
 

 0   

ρ
​ ]​,  B  ≡ ​ [ ​1 

 
 0   

1

​ ​
0
 
 
 0   

1

​ ​
0
 
 
 0   

0

​ ]​,  C  ≡ ​ [ ​​
1   
1​
​ ​

​

0   
0​
​ ​

​

1   
0​
​ ]​,  D  ≡ ​ [ ​​

0   
0​
​ ​

​

0   
0​
​ ​

​

0   
1​
​ ]​ .

Let ​y​t​ denote a vector of endogenous state variables. Suppose the economic model 
can be described in terms of the stochastic difference equation

(A3)	 F ​E​t​ ​[ ​y​t+1​ ]​  +  G​y​t​  +  H​y​t−1​  +  M​s​t​  +  N ​E​t​ ​[ ​s​t+1​ ]​  =  0, 
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where F, G, H, M, N are matrices of parameters. Notice that the unobservable 
exogenous state ​x​  t​ only enters the equilibrium through the observable vector ​s​t​ , 
reflecting the assumption that the information set of the representative agent is given 
only by past and current values of ​s​t​ and of the endogenous state ​y​t​  . Suppose there 
is a unique stable solution of the model:

(A4)	​ y​t​  =  P​y​t−1​  +  Q​s​t​  +  R​x​t | t​ , 

where we use the notation ​x​t | t​ for the agents’ expectation E ​[ ​x​t​ | ​s​t​ , ​s​t−1​, … ]​. The 
matrices P, Q, R can be found solving the three matrix equations

	 F​P​  2​  +  GP  +  H = 0,    ​ ( FP  +  G )​ Q  +  M  =  0,

	​ ( FP  +  G )​ R  + ​ [ F​( QC  +  R )​  +  NC ]​ A = 0.

See Uhlig (1995) for techniques to solve the first equation in P. The solution of the 
other two is straightforward as they are linear in Q and R.

The economic model of Section I is given directly in the form (A4), by equa-
tion (9). The economic model of Section III is presented in the online Appendix.

A. Kalman Filters

We can use the Kalman filter to express the agents’ expectations ​x ​t | t​ in recursive 
form as

(A5)	​ x  ​t | t​  =  A​x​t−1 | t−1​  +  K(​s​t​ − ​s​t | t−1​)

 	 =  (I − KC)A​x ​t−1 | t−1​  +  K​s​t​ , 

where the matrix of Kalman gains K depends on the parameters of the productiv-
ity process. We assume that (A5) is stable, i.e., all eigenvalues of (I − KC)A are 
smaller than one in absolute value. Notice that stability of the filter does not require ​
x​t​ to be stationary, e.g., the model used in Sections I and III is non-stationary and 
yet the filter is stable.

The vector of states for the econometrician is given by (​x​t​ , ​x ​t | t  ​, ​y​t​). The dynamics 
of ​x​ t​ are given by (A1). The dynamics of ​x  ​t | t​ are given by

	​ x  ​t | t​  =  (I − KC)A​x​t−1 | t−1​  +  KCA​x​t−1​  +  (KCB  +  KD)​v​t​ ,

which follows from (A1) and (A5). The dynamics of ​y​t​ are given by (A4). To set 
up the econometrician’s Kalman filter we use the dynamic system just described for 
(​x​t​ , ​x​t | t​ , ​y​t​) and the observation equation

(A6)	​ s​ t​ E​  =  T​[ ​y​t​ ​ s​t​ ]​, 

where T depends on the available observable variables.
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B. Singularity

Solving (A4) backward and substituting in (A6), we can express the econometri-
cian’s observables ​s​ t​ E​ in terms of distributed lags of the agents’ observables ​s​t​ and of 
the agents’ expectations ​x ​t | t​ :

(A7)	​ s​ t​ E​  =  Ξ(L)(​s​t​ ​ x​t | t​)′.

Define the vector of innovations for the econometrician

(A8)	​ u​t​  = ​ s​ t​ E​  −  E ​[ ​s​ t​ E​ | ​s​ t−1​ E
  ​, ​s​ t−2​ E

  ​, … ]​.

We say that the VAR in ​s​ t​ E​ is invertible if ​v​t​ can be expressed as a linear combination 
of current and past values of ​u​ t​ .

Lemma 1: If the dimension of the agent’s observation vector is smaller than the 
dimension of the shock vector, m < n, then the VAR in ​s​ t​ E​ is not invertible.

Proof:
The agents’ Kalman filter can be solved backward to express ​x ​t | t​ as a func-

tion of current and past values of ​s​t​  . This, combined with (A7) and (A8), implies 
that ​s​ t​ E​ and thus ​u​t​ can be expressed as a function of current and past values of ​
s​t​  . This implies that Var[​v​t​ | ​u​t  ​, ​u ​t−1​, …] ≥ Var[​v​t​ | ​s​t​ , ​s​t−1​, …]. Standard derivations 
allow us to express the innovations in ​s​t​ , as ​s​t​ − E[​s​t​ | ​s​t−1​, ​s​t−2​ , …] = Ψ​( L )​ ​v​t​  . 
Since Ψ is m × n, ​v​t​ cannot be expressed in terms of the agent’s innovations, so 
Var​[ ​v​t​ | ​s​t​, ​s​t−1​, … ]​ > 0. Combining this with the inequality above yields 
Var[​v​t​ | ​u​t​ , ​u​t−1​, …] > 0.

The main point of the lemma is that what matters is not the number of variables 
observed by the econometrician, but the number of variables observed by the agent. If 
the agent has not enough information to back up the shocks ​v​t​  , an econometrician can-
not generate additional information on these shocks by observing the agent’s behavior.

C. Equivalent Full Information Model

Write the joint dynamics of ​x  ​t | t​ and ​s​t​ as follows:

	​ x​t | t​  =  A​x​t−1 | t−1​  +  K(​s​t​ − CA​x​t−1 | t−1​),

	​ s​t​  =  CA​x​t−1 | t−1​  + ​ s​t​ − CA​x​t−1 | t−1​,

where the first equation follows from (A5). Let ​Σ​S​ denote the variance-covariance 
matrix Va​r​t−1​​[ ​s​t​ ]​ obtained from the Kalman filter. Suppose this matrix can be factor-
ized as ​Σ​S​ = GG′ for some matrix G. Consider the model

(A9)	​​   x​​t​  =  A​​  x​​t−1​  +  KG​​  v​​t​, 

(A10)	​ s​t​  =  CA​​  x​​t−1​  +  G​​  v​​t​, 
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where ​​  v​​t​ is an m-dimensional vector of mutually independent, i.i.d. standard normal 
shocks. Identifying ​x​t​ with ​x​t | t​ and ​v​t​ with ​s​t​ − CA​x​t−1 | t−1​ we obtain the following 
result.

Lemma 2: For any matrix G that satisfies GG′ = ​Σ​S​ the original signal extraction 
model is observationally equivalent to (A9)–(A10) with the assumption that the 
agent perfectly observes the state ​​  x​​t​ and the shock ​​  v​​t​  .
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